माना $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{ n }}(i=1,2, \ldots, n$ के लिए $x_{i} \neq 0$ है) समांतर श्रेढ़ी में ऐसे हैं कि $x_{1}=4$ तथा $x_{21}=20$ है। यदि $n$ का न्यूनतम धनपूर्णांक मान जिसके लिए $x_{ n } >50$ है, तो $\sum_{i=1}^{ n }\left(\frac{1}{x_{i}}\right)$ बराबर है

  • [JEE MAIN 2018]
  • A

    $3$

  • B

    $\frac {13}{8}$

  • C

    $\frac {13}{4}$

  • D

    $\frac {1}{8}$

Similar Questions

माना कि एक समान्तर श्रेणी (arithmetic progression ($A.P.$)) के सभी पद धन पूर्णांक हैं । इस समान्तर श्रेणी में यदि पहले सात ($7$) पदों के योग और पहले ग्यारह ($11$) पदों के योग का अनुपात $6: 11$ है तथा सातवाँ पद $130$ और $140$ के बीच मं स्थित है, तब इस समान्तर श्रेणी के सार्व अन्तर (common difference) का मान है

  • [IIT 2015]

एक समान्तर श्रेणी के $m$ व $n$ पदों के योगों का अनुपात ${m^2}:{n^2}$ है, तो $m$ वें व $n$ वें पदों का अनुपात होगा

माना समांतर श्रेढी $3,7,11, \ldots \ldots$ के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$ है, तो $\mathrm{n}$ बराबर है .............

  • [JEE MAIN 2024]

माना कि $X$ समान्तर श्रेणी (arithmetic progression) $1, 6, 11, ...$ के प्रथम $2018$ पदों का समुच्चय (set) है, और $Y$ समान्तर श्रेणी $9,16,23, \ldots$ के प्रथम $2018$ पदों का समुच्चय है। तब समुच्चय $X \cup Y$ में अवयवों (elements) की संख्या है................|

  • [IIT 2018]

श्रेणी $2\sqrt 2  + \sqrt 2  + 0 + .....$ का $8$ वाँ पद होगा