- Home
- Standard 11
- Mathematics
माना $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{ n }}(i=1,2, \ldots, n$ के लिए $x_{i} \neq 0$ है) समांतर श्रेढ़ी में ऐसे हैं कि $x_{1}=4$ तथा $x_{21}=20$ है। यदि $n$ का न्यूनतम धनपूर्णांक मान जिसके लिए $x_{ n } >50$ है, तो $\sum_{i=1}^{ n }\left(\frac{1}{x_{i}}\right)$ बराबर है
$3$
$\frac {13}{8}$
$\frac {13}{4}$
$\frac {1}{8}$
Solution
$\because$ $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},….,\frac{1}{{{x_n}}}$ are in $A.P.$
${x_1} = 4\,\,\,\,\,{x_{21}} = 20$
Let $'d'$ be the common difference of this $A.P.$
$\therefore $ its ${21^{st}}$ term $ = \frac{1}{{{x_{21}}}} = \frac{1}{{{x_1}}} + \left[ {\left( {21 – 1} \right) \times d} \right]$
$ \Rightarrow d = \frac{1}{{20}} \times \left( {\frac{1}{{20}} – \frac{1}{4}} \right) \Rightarrow d = – \frac{1}{{100}}$
Alson ${x_n} > 50$ (given).
$\therefore \frac{1}{{{x_n}}} = \frac{1}{{{x_1}}} + \left[ {\left( {n – 1} \right) \times d} \right]$
$ \Rightarrow {x_n} = \frac{{{x_1}}}{{1 + \left( {n – 1} \right) \times d \times {x_1}}}$
$\therefore {x_n} = \frac{{{x_1}}}{{1 + \left( {n – 1} \right) \times d \times {x_1}}} > 50$
$ \Rightarrow \frac{4}{{1 + \left( {n – 1} \right) \times \left( { – \frac{1}{{100}}} \right) \times 4}} > 50$
$ \Rightarrow 1 + \left( {n – 1} \right) \times \left( { – \frac{1}{{100}}} \right) \times 4 < \frac{4}{{50}}$
$ \Rightarrow \left( { – \frac{1}{{100}}} \right)\left( {n – 1} \right) < – \frac{{23}}{{100}}$
$ \Rightarrow n – 1 > 23\,\,\,\,\,\, \Rightarrow n > 24$
Therefore,$n=25$.
$ \Rightarrow \sum\limits_{i = 1}^{25} {\frac{1}{x}} = \frac{{25}}{2}\left[ {\left( {2 \times \frac{1}{4}} \right) + \left( {25 – 1} \right) \times \left( { – \frac{1}{{100}}} \right)} \right] = \frac{{13}}{4}$